產(chǎn)品目錄
蒸汽流量計
渦街流量計
孔板流量計
壓縮空氣流量計
氣體流量計
熱式氣體質(zhì)量流量計
旋進旋渦流量計
金屬管浮子流量計
靶式流量計
電磁流量計
渦輪流量計
橢圓齒輪流量計
水流量計
液體流量計
超聲波流量計
磁翻板液位計
浮子液位計
浮球液位計
玻璃管液位計
雷達液位計
超聲波液位計
投入式液位計
壓力變送器
差壓變送器
液位變送器
溫度變送器
熱電偶
熱電阻
雙金屬溫度計
相關(guān)產(chǎn)品
聯(lián)系我們
聯(lián)系電話:15195518515
服務(wù)熱線:0517-86801009
公司傳真:0517-86801007
公司郵箱:1464856260@qq.com
公司地址:江蘇省金湖縣理士大道61號
蒸汽介質(zhì)的超高流速對于蒸汽管道計量表計量的影響及解決方案
蒸汽管道計量表的測量技術(shù)發(fā)展至今已經(jīng)比較成熟,其主要優(yōu)點是:無可動部件,結(jié)構(gòu)簡單牢固,安裝方便,易于維護,費用支出少。量程比一般在10∶1以上,精度也相對較高,測量氣體一般在1.0級到1.5級之間,測量液體一般在1.0級。蒸汽管道計量表被廣泛 應(yīng)用于蒸汽流量的計量,我們知道,一般情況下,流量計對于所測的流體的流速都有一定的要求,尤其于蒸汽管道計量表是依靠流體產(chǎn)生的規(guī)律性的渦街進行工作的,更要將流速限定于規(guī)定的范圍之內(nèi),太低和太高都會導(dǎo)致渦街不能工作或數(shù)值失真。但是在實踐工作中,我們卻發(fā)現(xiàn)有人利用蒸汽管道計量表對于流速的要求來做文章,做一些違法的事情,使計量數(shù)值嚴重失真,導(dǎo)致客戶產(chǎn)生損失。做法就是使用一些看似無意其實違法的手段,致使下游的壓力驟降,導(dǎo)致蒸汽流速超過蒸汽管道計量表測量流速上限,蒸汽管道計量表不能正常工作,計量嚴重偏小。
具體說明如下:
在多年的檢定工作中,我們發(fā)現(xiàn)有人使用了一個蒸汽蒸汽管道計量表的漏洞,在保持蒸汽管道計量表計量管段原封不動的情況下,只在蒸汽出口處做文章,即可致使蒸汽管道計量表計量嚴重偏小。
圖1中我們看到在蒸汽管道計量表計量段,沒有任何修改,而在其后的大型儲氣罐卻大有文章。整個系統(tǒng)根據(jù)儲氣罐內(nèi)壓力變化來對前后閥門分別進行自動控制,從而進行一套充氣、放氣、再充氣、放氣的循環(huán)操作。整個循環(huán)過程是:開始時,儲氣罐是空的,閥門1、閥門2都關(guān)閉。然后閥門1快速打開,上游0.8MPa的過和熱蒸汽劇烈充入空罐。然后儲氣罐充氣漸滿,壓力升高至一定壓力后,關(guān)閉閥門1,打開閥門2,讓儲氣罐中蒸汽排出以供使用。這樣操作的目的主要是使大部分流過蒸汽管道計量表的蒸汽以*高流速通過。
為什么這樣會使蒸汽流速達到非常高的程度呢?而蒸汽管道計量表在高流速下計量會有什么問題呢?
1 分析蒸汽的流速
臨界壓力比是分析管內(nèi)流動的一個重要數(shù)值,蒸汽在出口外的背壓pb與臨界界面前的進口壓力P1之比小于或等于臨界壓力比時,在臨界截面上,蒸汽流速達到臨界值音速c。
臨界壓力比:γcr=pcr/p1
水蒸汽音速:c=√ kpv
當過流氣體為過熱蒸汽時:k=1.3,γcr=0.546
pcr稱為:臨界壓力。
所以我們得到:通過降低背壓比,能讓通過蒸汽的流速提升到相對于蒸汽管道計量表來說非常高的程度,甚至達到音速,過熱蒸汽音速可以達到500m/s以上。從熱網(wǎng)過來的蒸汽壓力一般高于0.8MPa,而在儲氣罐開始充氣時,罐內(nèi)壓力幾乎為常壓。根據(jù)蒸汽的臨界流原理。蒸汽管道和容器的前后壓力比只要低于臨界壓力比γcr=0.546,那么管內(nèi)蒸汽的流速將達到音速。在這個案例里,儲氣罐內(nèi)壓力按充氣階段中后期才逐漸升高到的0.4MPa來計算,背壓比為0.5。也就是說,在大部分蒸汽通過階段,背壓比都小于0.546,蒸汽的流速都保持在音速,音速是大大超過蒸汽管道計量表測量流速上限的。通過這樣一個辦法,即能大幅度提高通過蒸汽管道計量表的蒸汽流速,致使蒸汽管道計量表計量嚴重偏少。不法用戶還狡辯,我的所有計量器具都通過了**法定計量檢定機構(gòu)的檢定。確實,這種情況,單是檢定流量計是無法發(fā)現(xiàn)問題的。我們可以判斷,介質(zhì)的高流速對蒸汽管道計量表的計量性能產(chǎn)生了很大的影響致使其計量不準。為什么這么說呢?我們再來分析氣體的高流速對蒸汽管道計量表的影響。
2 蒸汽管道計量表工作原理
在流體中安放漩渦發(fā)生體,流體在漩渦發(fā)生體兩側(cè)交替地分列出兩列有規(guī)律的交錯排列的漩渦,在一定雷諾數(shù)范圍內(nèi),改漩渦的頻率與漩渦發(fā)生體的幾何尺寸有關(guān),所產(chǎn)生的漩渦頻率f 正比于流量,此頻率可由各種傳感器檢出。
蒸汽管道計量表就是利用卡門渦街原理,得到如下關(guān)系:
f =(Sr ·u )/b
式中:b ——阻流件的寬度,m; u——流經(jīng)流量計的流體平均流速,m/s;f ——漩渦的頻率,Hz;Sr ——斯特羅哈爾數(shù)(無量綱)。
斯特羅哈爾數(shù)為無量綱參數(shù),它與漩渦發(fā)生體的形狀及雷諾數(shù)有關(guān)。圖3所示為三角柱漩渦發(fā)生體的斯特勞哈爾數(shù)與管道雷諾數(shù)的關(guān)系。
由圖3可見,在Re D=2×104~7×106范圍內(nèi) ,斯特勞哈爾數(shù)可視為常數(shù)。我們使用的蒸汽管道計量表都是在斯特勞哈爾數(shù)視為常數(shù)的這個范圍內(nèi)設(shè)計的。因此我們使用蒸汽管道計量表時一定要避免測量介質(zhì)的雷諾數(shù)在2×104~7×106這個范圍外,超過這個范圍,斯特勞哈爾數(shù)不再是常數(shù),蒸汽管道計量表測得的頻率與流速也不再是簡單的正比關(guān)系。也就是說,超過雷諾數(shù)2×104~7×106這個范圍,便違反了蒸汽管道計量表的設(shè)計原理,這時候蒸汽管道計量表是不能正常計量的。因為雷諾數(shù)與介質(zhì)流速有關(guān),所以我們具體到介質(zhì)流速的話,對于蒸汽來說,蒸汽管道計量表的流速測量范圍控制在5m/s~60m/s之間,好的蒸汽管道計量表量程上限*多再往上延伸20%。因此在選型蒸汽管道計量表的口徑和流量測量范圍時,要保證滿足這個流速限定。絕大部分蒸汽管道計量表對于高流速介質(zhì)是沒有辦法計量的。所以上訴案例中,用普通蒸汽管道計量表去計量音速下的蒸汽,得到的結(jié)果是完全不可信,不能用的。
蒸汽管道計量表是一種數(shù)字儀表,是通過傳感器來檢測漩渦頻率的。流量計的電氣性能必須要工作在適宜它的條件下。我們來看看在高流速下,蒸汽管道計量表檢測漩渦頻率的情況。引用一個高流速下蒸汽管道計量表的實驗[4]。該實驗在采用在線實時頻譜分析時發(fā)現(xiàn):在口徑為DN80及其以下的管線上,經(jīng)常會出現(xiàn)高于80m/s的高流速,其中有近一半的出現(xiàn)超過100m/s的高流速,更有甚者,流速高達180m/s。一般的蒸汽管道計量表在通過介質(zhì)流速過高時,會發(fā)生劇烈的漏波現(xiàn)象,因而產(chǎn)生難以估算的誤差。
從圖4上看漏波的結(jié)果就是檢測到的脈沖不再連續(xù),發(fā)生了漏缺。所以這種情況下,測量結(jié)果的趨勢是一般都是偏小。在高流速下,漩渦發(fā)生體后的流體運動更加復(fù)雜。渦街傳感器檢測信號需要一定的清晰度,如果流速過高,流場變得更加復(fù)雜。此時傳感器將受到嚴重干擾,目標信號清晰度急劇下降,使渦街流量傳感器測不準或者測不到。
我們可以看到,高流速下的蒸汽管道計量表的漏波十分明顯,正是利用了渦街的這個漏洞,讓蒸汽管道計量表在超高流速下大量漏波,致使*后得到的流量遠小于實際流量。
除了是上述案例中的裝置,還有一種把蒸汽直接放入水池中加熱水的熱水站,采用了手段這些都是為了設(shè)法讓蒸汽出口的壓力驟降,得到突然變小的背壓比,以大大提高蒸汽的流速。即使達不到音速,也遠高于蒸汽管道計量表的測量上限,導(dǎo)致蒸汽管道計量表的不正常工作。因此為了保證蒸汽管道計量表正常計量,我們必須重視蒸汽管道計量表的測量范圍,管內(nèi)流速必須限定在蒸汽管道計量表的測量范圍以內(nèi)。
對于那些在后端搞壓力驟降提高蒸汽流速的,可以想辦法把蒸汽流速限定在合理范圍內(nèi)。比如采用限流裝置,在蒸汽管道計量表后方管線上安裝臨界流文丘里噴嘴。當蒸汽通過臨界流文丘里噴嘴時,在噴嘴上、下游壓力比如果小于或等于該噴嘴的臨界壓力比時,噴嘴喉部形成臨界狀態(tài),流過噴嘴的蒸汽質(zhì)量流量達到*大。這時蒸汽的質(zhì)量流量不受下游狀態(tài)變化的影響。根據(jù)這個原理,我們把臨界流文丘里噴嘴安裝在可能會發(fā)生壓力驟降的管段前,就能穩(wěn)穩(wěn)的限死上游通過蒸汽管道計量表的*大流量了。而選用文丘里噴嘴的原因是能夠減少壓力損失。
具體說明如下:
在多年的檢定工作中,我們發(fā)現(xiàn)有人使用了一個蒸汽蒸汽管道計量表的漏洞,在保持蒸汽管道計量表計量管段原封不動的情況下,只在蒸汽出口處做文章,即可致使蒸汽管道計量表計量嚴重偏小。
圖1中我們看到在蒸汽管道計量表計量段,沒有任何修改,而在其后的大型儲氣罐卻大有文章。整個系統(tǒng)根據(jù)儲氣罐內(nèi)壓力變化來對前后閥門分別進行自動控制,從而進行一套充氣、放氣、再充氣、放氣的循環(huán)操作。整個循環(huán)過程是:開始時,儲氣罐是空的,閥門1、閥門2都關(guān)閉。然后閥門1快速打開,上游0.8MPa的過和熱蒸汽劇烈充入空罐。然后儲氣罐充氣漸滿,壓力升高至一定壓力后,關(guān)閉閥門1,打開閥門2,讓儲氣罐中蒸汽排出以供使用。這樣操作的目的主要是使大部分流過蒸汽管道計量表的蒸汽以*高流速通過。
為什么這樣會使蒸汽流速達到非常高的程度呢?而蒸汽管道計量表在高流速下計量會有什么問題呢?
1 分析蒸汽的流速
臨界壓力比是分析管內(nèi)流動的一個重要數(shù)值,蒸汽在出口外的背壓pb與臨界界面前的進口壓力P1之比小于或等于臨界壓力比時,在臨界截面上,蒸汽流速達到臨界值音速c。
臨界壓力比:γcr=pcr/p1
水蒸汽音速:c=√ kpv
當過流氣體為過熱蒸汽時:k=1.3,γcr=0.546
pcr稱為:臨界壓力。
所以我們得到:通過降低背壓比,能讓通過蒸汽的流速提升到相對于蒸汽管道計量表來說非常高的程度,甚至達到音速,過熱蒸汽音速可以達到500m/s以上。從熱網(wǎng)過來的蒸汽壓力一般高于0.8MPa,而在儲氣罐開始充氣時,罐內(nèi)壓力幾乎為常壓。根據(jù)蒸汽的臨界流原理。蒸汽管道和容器的前后壓力比只要低于臨界壓力比γcr=0.546,那么管內(nèi)蒸汽的流速將達到音速。在這個案例里,儲氣罐內(nèi)壓力按充氣階段中后期才逐漸升高到的0.4MPa來計算,背壓比為0.5。也就是說,在大部分蒸汽通過階段,背壓比都小于0.546,蒸汽的流速都保持在音速,音速是大大超過蒸汽管道計量表測量流速上限的。通過這樣一個辦法,即能大幅度提高通過蒸汽管道計量表的蒸汽流速,致使蒸汽管道計量表計量嚴重偏少。不法用戶還狡辯,我的所有計量器具都通過了**法定計量檢定機構(gòu)的檢定。確實,這種情況,單是檢定流量計是無法發(fā)現(xiàn)問題的。我們可以判斷,介質(zhì)的高流速對蒸汽管道計量表的計量性能產(chǎn)生了很大的影響致使其計量不準。為什么這么說呢?我們再來分析氣體的高流速對蒸汽管道計量表的影響。
2 蒸汽管道計量表工作原理
在流體中安放漩渦發(fā)生體,流體在漩渦發(fā)生體兩側(cè)交替地分列出兩列有規(guī)律的交錯排列的漩渦,在一定雷諾數(shù)范圍內(nèi),改漩渦的頻率與漩渦發(fā)生體的幾何尺寸有關(guān),所產(chǎn)生的漩渦頻率f 正比于流量,此頻率可由各種傳感器檢出。
蒸汽管道計量表就是利用卡門渦街原理,得到如下關(guān)系:
f =(Sr ·u )/b
式中:b ——阻流件的寬度,m; u——流經(jīng)流量計的流體平均流速,m/s;f ——漩渦的頻率,Hz;Sr ——斯特羅哈爾數(shù)(無量綱)。
斯特羅哈爾數(shù)為無量綱參數(shù),它與漩渦發(fā)生體的形狀及雷諾數(shù)有關(guān)。圖3所示為三角柱漩渦發(fā)生體的斯特勞哈爾數(shù)與管道雷諾數(shù)的關(guān)系。
由圖3可見,在Re D=2×104~7×106范圍內(nèi) ,斯特勞哈爾數(shù)可視為常數(shù)。我們使用的蒸汽管道計量表都是在斯特勞哈爾數(shù)視為常數(shù)的這個范圍內(nèi)設(shè)計的。因此我們使用蒸汽管道計量表時一定要避免測量介質(zhì)的雷諾數(shù)在2×104~7×106這個范圍外,超過這個范圍,斯特勞哈爾數(shù)不再是常數(shù),蒸汽管道計量表測得的頻率與流速也不再是簡單的正比關(guān)系。也就是說,超過雷諾數(shù)2×104~7×106這個范圍,便違反了蒸汽管道計量表的設(shè)計原理,這時候蒸汽管道計量表是不能正常計量的。因為雷諾數(shù)與介質(zhì)流速有關(guān),所以我們具體到介質(zhì)流速的話,對于蒸汽來說,蒸汽管道計量表的流速測量范圍控制在5m/s~60m/s之間,好的蒸汽管道計量表量程上限*多再往上延伸20%。因此在選型蒸汽管道計量表的口徑和流量測量范圍時,要保證滿足這個流速限定。絕大部分蒸汽管道計量表對于高流速介質(zhì)是沒有辦法計量的。所以上訴案例中,用普通蒸汽管道計量表去計量音速下的蒸汽,得到的結(jié)果是完全不可信,不能用的。
蒸汽管道計量表是一種數(shù)字儀表,是通過傳感器來檢測漩渦頻率的。流量計的電氣性能必須要工作在適宜它的條件下。我們來看看在高流速下,蒸汽管道計量表檢測漩渦頻率的情況。引用一個高流速下蒸汽管道計量表的實驗[4]。該實驗在采用在線實時頻譜分析時發(fā)現(xiàn):在口徑為DN80及其以下的管線上,經(jīng)常會出現(xiàn)高于80m/s的高流速,其中有近一半的出現(xiàn)超過100m/s的高流速,更有甚者,流速高達180m/s。一般的蒸汽管道計量表在通過介質(zhì)流速過高時,會發(fā)生劇烈的漏波現(xiàn)象,因而產(chǎn)生難以估算的誤差。
從圖4上看漏波的結(jié)果就是檢測到的脈沖不再連續(xù),發(fā)生了漏缺。所以這種情況下,測量結(jié)果的趨勢是一般都是偏小。在高流速下,漩渦發(fā)生體后的流體運動更加復(fù)雜。渦街傳感器檢測信號需要一定的清晰度,如果流速過高,流場變得更加復(fù)雜。此時傳感器將受到嚴重干擾,目標信號清晰度急劇下降,使渦街流量傳感器測不準或者測不到。
我們可以看到,高流速下的蒸汽管道計量表的漏波十分明顯,正是利用了渦街的這個漏洞,讓蒸汽管道計量表在超高流速下大量漏波,致使*后得到的流量遠小于實際流量。
除了是上述案例中的裝置,還有一種把蒸汽直接放入水池中加熱水的熱水站,采用了手段這些都是為了設(shè)法讓蒸汽出口的壓力驟降,得到突然變小的背壓比,以大大提高蒸汽的流速。即使達不到音速,也遠高于蒸汽管道計量表的測量上限,導(dǎo)致蒸汽管道計量表的不正常工作。因此為了保證蒸汽管道計量表正常計量,我們必須重視蒸汽管道計量表的測量范圍,管內(nèi)流速必須限定在蒸汽管道計量表的測量范圍以內(nèi)。
對于那些在后端搞壓力驟降提高蒸汽流速的,可以想辦法把蒸汽流速限定在合理范圍內(nèi)。比如采用限流裝置,在蒸汽管道計量表后方管線上安裝臨界流文丘里噴嘴。當蒸汽通過臨界流文丘里噴嘴時,在噴嘴上、下游壓力比如果小于或等于該噴嘴的臨界壓力比時,噴嘴喉部形成臨界狀態(tài),流過噴嘴的蒸汽質(zhì)量流量達到*大。這時蒸汽的質(zhì)量流量不受下游狀態(tài)變化的影響。根據(jù)這個原理,我們把臨界流文丘里噴嘴安裝在可能會發(fā)生壓力驟降的管段前,就能穩(wěn)穩(wěn)的限死上游通過蒸汽管道計量表的*大流量了。而選用文丘里噴嘴的原因是能夠減少壓力損失。